Descoberta na Amazônia enzima-chave para obtenção do etanol de segunda geração

José Tadeu Arantes | Agência FAPESP — A produção do etanol de segunda geração ou etanol celular, obtido a partir da palha e do bagaço de cana-de-açúcar, pode aumentar em até 50% a produção brasileira de etanol. Desnecessário enfatizar a importância econômica e ambiental dessa possibilidade, que transforma resíduos em recurso.

Para tanto, o país possui a melhor biomassa do planeta, a capacidade industrial instaurada, a engenharia especializada e a levedura adequada. Só falta completar a composição do coquetel enzimático capaz de viabilizar o processo de sacarificação, por meio do qual os açúcares complexos (polissacarídeos) são despolimerizados e decompostos em açúcares simples. Compor uma plataforma microbiana industrial para a produção do conjunto de enzimas necessárias é o alvo de pesquisas avançadas na área.

Um importante resultado acaba de ser alcançado, com a descoberta, no lago Poraquê, na Amazônia, de microrganismos capazes de produzir uma enzima crítica para o êxito do empreendimento. Isolada, caracterizada e produzida, a enzima mostrou-se compatível com duas fases essenciais da produção do etanol de segunda geração: a fermentação e a sacarificação. A realização simultânea dessas duas etapas oferece a perspectiva de uma grande redução de custos para a indústria sucroalcooleira, uma vez que as reações podem ocorrer em um único reactor e há economia de reagentes.

O estudo mobilizou pesquisadores do Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), da Petrobras, da Universidade de São Paulo (USP) e da Universidade Federal de São Carlos (UFSCar), e contou com apoio da FAPESP. Artigo assinado pela equipe de pesquisadores foi publicado na *Biochimica et Biophysica Acta (BBA) – Proteins and Proteomics*.

“A sacarificação é a etapa mais cara do processo; De 30% a 50% do custo do etanol celular é desperdiçado com as enzimas necessárias para transformar os açúcares complexos em açúcares simples. E, atualmente, a eficiência da conversão realizada por essas enzimas está entre 50% e 65%. Isso significa que de 30% a 35% do açúcar disponível na biomassa é ‘perdido’ durante a sacarificação. O grande propósito do nosso estudo foi encontrar biocatalisadores capazes de contribuir para o aumento da eficiência”, disse Mario Tryago Murakami, do CNPEM, um dos coordenadores da pesquisa, à Agência FAPESP.

Segundo o pesquisador, no arsenal de enzimas necessárias, através de maneira simétrica, as beta-glucosidases têm importância fundamental, porque respondem pela última fase da cascata de sacarificação da celulose.

“Sabemos que, à medida que aumenta o percentual do produto da sacarificação, a taxa de processamento do açúcar. Porque a presença do produto inibe a atuação das enzimas. Isso é uma espécie de efeito geral. No caso específico, a glicose gerada restringe a atuação das beta-glucosidases. Essa gargalhada tecnológica tem sido objeto de estudos exhaustivos. Para aumentar a eficiência da sacarificação, é preciso que as beta-glucosidases sejam altamente tolerantes à presença da glicose”, disse Murakami.

Devido a especificidades genéticas, decorrentes de diferenças no processo evolutivo, enzimas homólogas podem apresentar variados graus de resistência à inibição pelo produto. E o alvo dos pesquisadores no estudo em pauta foi encontrar as beta-glucosidases mais adaptadas à biomassa existente no território brasileiro. Para isso, foram investigados os processos naturais que ocorrem em diferentes biomas do país, tanto na Floresta Amazônica como no Cerrado.

Flávio Henrique da Silva, do UFSCar, outro coordenador do estudo, foi o responsável por esse processo de bioprospecção. É o achado mais promissor ocorreu no lago Poraquê, na Amazônia, onde amostras da comunidade microbiana não cultivável local apresentaram genes codificadores de beta-glucosidases com o potencial industrial procurado.

“Em um habitat como o lago Poraquê, os microrganismos adaptaram-se a uma alimentação muito rica em polissacarídeos, constituída por resíduos de madeira, folhas de plantas etc. A enzima beta-glucosidase presente nesses microrganismos é distinta de enzimas homólogas resultantes de pressões evolutivas diferentes”, disse Murakami.

Sacaarificação simultânea à fermentação

Em seus estudos enzimológicos, Silva verificou que a beta-glucosidase codificada pelos microrganismos do lago Poraquê apresentava eficiência catalítica para a sacarificação do bagaço de cana-de-açúcar e tolerância expressiva à inibição pela glicose. O passo seguinte foi dado pela equipe de Murakami, especializada em biologia estrutural e funcional, que elucidou, em nível molecular e atômico, as bases do funcionamento dessa enzima.

“Foi um bom exemplo de trabalho em equipe, juntando grupos de prospecção, grupos de enzimologia, grupos de estudos mecânicos, grupos de bioinformática e, muitos laboratórios nacionais”, disse Murakami.

Em relação à estrutura molecular, o estudo algemérico evidenciou uma proteína diferente das demais de sua categoria, com uma arquitetura quaternária única.

“Esse estudo corroborou pesquisas anteriores do grupo a respeito dos determinantes estruturais para a tolerância da enzima ao produto, validando nosso modelo mecânico. Além disso, verificamos que essa beta-glucosidase atua em condições de temperatura e pH compatíveis com o processo de hidrólise”, disse Murakami.

Essa informação é muito relevante, porque indica que a enzima encontrada pode vir a compor um processo chamado de SSF: sacarificação simultânea à fermentação. Pela falta de poder atuar em condições de temperatura compatíveis com o crescimento da levadura, essa beta-glucosidase propicia que a disponibilização do carboidrato resultante da sacarificação e sua fermentação pela levadura possam ocorrer ao mesmo tempo. Tal estratégia ajuda a mitigar o efeito de inibição pelo produto, porque, à medida que o açúcar é produzido, ele também vai sendo consumido pela levadura, o que alivia a enzima da inibição por uma quantidade excessiva de glicose, o passo seguinte é fazer estudos de combinação dessa enzima com os coquetel de enzimas fúngicas já existentes, visando o ganho de eficiência no aumento da sacarificação.

“Uma vez extraito o gene de interesse, a partir de bibliotecas gênicas de microrganismos não cultiváveis e de possíveis modificações racionais baseadas no conhecimento da estrutura para aumento de termoestabilidade, ele é transferido para outros hospedeiros por meio de técnicas de biologia molecular. O hospedeiro em questão é o trichoderma, um fungo filamentoso que já possui um arsenal de enzimas ativas sobre carboidratos. Com a adição da beta-glucosidase amazônica, ele terá seu potencial aumentado. Trata-se de potencializar uma plataforma microbiana industrial já existente”, disse Murakami. O objetivo da equipe é patentear o fango engenheirado com a enzima,